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SUMMARY 

A new synthesis of fused 2H-pyran derivatives via an - 
electrocyclisation reaction is described which is based on a 
novel route to o-quinomethide-type precursors. These 
transient materials are formed by the dehydrofluorination 
(with KF) in dipolar aprotic solvents of the Claisen re- 
arrangement intermediates produced by the thermolyses of 
polyfluoroaryl and -heterdaryl prop-2-enyl ethers. 5,6,7,8- 
Tetrafluoro-2H-l-benzopyran (4) is formed from the C6F5-ether - 
(1) in refluxing DMF while 5,6,7,8,9,10-hexafluoro-2H- 
naphtho[2,1_b]pyran (6) is obtained from the 2-naphthyl ether 
(5) in sulpholane at 155-162O. The 2,4,5,6-tetrafluoro-3- 
pyridyl ether (8) in sulpholane at 182O gave a mixture of 
6,7,8-trifluoro-2H-pyrano[3,2_blpyridine (10) (343) and 
5,6,8-trifluoro-2:-pyrano[2,3-clpyridine (12) (l%), but 
2,3,5,6-tetrafluoropyridyl ether underwent dealkylation to 
the 4-hydroxypyridine. The o-quinodimethide intermediate 
from pentafluorophenylprop-2-enyl sulphide (13) isomerised 
via a novel [1,5] sigmatropic proton shift before cyclisation 
to 4,5,6,7-tetrafluoro-2-methylbenzo[blthiophen (14). 
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INTRODUCTION 

In an earlier paper [21, a potentially simple route 

to 5,6,7,8-tetrafluoro-2H-1-benzopyran (4) was conceived - 
whereby the thermolysis of pentafluorophenyl prop-2-enyl 

ether (1) to the Claisen rearrangement intermediate (2) would 

be followed first by elimination of hydrogen fluoride and 

then electrocyclisation of the o-quinomethide-type material 

(3) (Scheme 1). However, pyrolytic elimination of HF from 

C6F50CH2CH=CH2 4 

(1) 
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Scheme 1 (4) 

(2) failed to take place even at 480°: products arose from 

internal Diels-Alder reactions of the dienone (2) [2,31. 

This paper records a successful method for the dehydro- 

fluorination of (2) and the subsequent formation of (4), and 

its application to other polyfluoroaryl and -heteroaryl 

prop-2-enyl ethers. One example of the reaction using a 

prop-2-enyl sulphide is also given. 

RESULTS AND DISCUSSION 

Pentafluorophenyl prop-2-enyl ether (1) treated with 

potassium fluoride in dimethylformamide at reflux temperature 

for 4 h. gave the 2H-1-benzopyran derivative (4) in 48% 

yield. The structure of this material was deduced from its 

simple 19 F and 1 H n.m.r. spectra. 
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1,3,4,5,6,7,8-Heptafluoro-2-naphthyl prop-2-enyl ether 
(5) [4] reacted with potassium fluoride in sulpholane at 
155-162O over 4 h. to give (6) in 41% yield (Scheme 2). The 
19 F n.m.r. spectrum showed the presence of only one large 
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Scheme 2 

per1 JF_F coupling constant (J8F_gF 64 Hz) demonstrating 
that the reaction must have proceeded via the 1-(prop-2- 
enyl)naphthalen-2-one derivative (7). 

No viable products were obtained from the reaction of 
2,4,5,6-tetrafluoro-3-pyridyl prop-2-enyl ether (8) [5] with 
potassium fluoride in sulpholane at 140-180° in conventional 
glass apparatus, presumably because of the hydrolysis of 
intermediates containing a -N=CF-group by water formed from 
the attack of eliminated HF with the glass [6]. When the 
reaction was carried out in a sealed nickel tube at 182O for 
4 h., two products were formed. The major product (34%) was 
identified as the 2;-pyran derivative (10) from its 1 H n.m.r. 
spectrum and from its 19 F n.m.r. spectrum which showed 
three fluorine absorptions, only one of which was at low 
field (92.7 p.p.m.) and therefore on a carbon adjacent to 
the nitrogen atom. The minor component (1%) was the isomer 
(12) which had two low field fluorine absorptions (at 93.9 
and 97.3 p.p.m.) out of a total of three. These results are 
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summarised in Scheme 3, which also shows the respective 

Claisen rearrangement intermediates. The most interesting 

Scheme 3 

feature of this reaction is the fact that the major product 

in the reaction (10) arises from the [3,3] sigmatropic shift 

of the prop-2-enyl group onto the adjacent carbon nearest to 

the nitrogen, which contrasts with the vapour phase reaction 

at 185O for 112.8 h. in which the prop-2-enyl group migrated 

to the adjacent carbon farthest away from the nitrogen [5], 

demonstrating in a spectacular way the role of the solvent 

on the course of the reaction. 

Treatment of 2,3,5,6-tetrafluoro-4-pyridyl prop-2-enyl 

ether [5] with potassium fluoride in sulpholane in a sealed 

nickel tube at 137-140° for 17 h. failed to give any 2H- - 
pyran derivative. Extensive decomposition occurred during 

the reaction and the only compounds isolated were unchanged 

starting material (9%) and 2,3,5,6-tetrafluoro-4-hydroxy- 

pyridine (10%) [7], the de-alkylation product from the parent 

ether. 

Finally, an attempt was made to prepare the sulphur 

analogue of (4) from pentafluorophenyl prop-2-enyl sulphide 

(13) [aI. Reaction of (13) with potassium fluoride in 

sulpholane in a sealed nickel tube at 191-192O for 22 h. gave 

a complex mixture of products from which was isolated 

4,5,6,7-tetrafluoro-2-methylbenzo[b]thiophen (14) (9%) which 

had been prepared previously [9]. The formation of this 
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compound can be rationalised by invoking the following 
sequence of reactions (Scheme 4): 

C6F5SCH2CH=CH2 4 

(13) 
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Scheme 4 

This [1,51 sigmatropic shift appears to be the first 
example of the migration of a vinylic hydrogen to a 
terminal heteroatom. Previously a related reaction in the 
opposite direction was invoked to account for the formation 
of 2;-1-benzopyran [lo] (Scheme 5). 

C6H50CH2C=CH _ic + [1,51 
shift* 
of H 

Scheme 5 
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EXPERIMENTAL 

1H (60 MHz) and 19 F n.m.r. (56.4 MHz) were obtained with 
a Varian EM360L spectrometer. Chemical shifts 6F are upfield 
from internal CFC13; 6H are downfield from internal TMS. 

Reactions of polyfluoroaryl and -heteroaryl prop-2-enyl 
ethers with potassium fluoride 

(a) Use of pentafluorophenyl prop-2-enyl ether (1) [2] 
The ether (1) (5.17 g) and anhydrous KF (3.33 g) were 

heated together in dry dimethylformamide (DMF) under reflux 
for 4 h. After being cooled, the mixture was fractionally 
distilled through a 6" vacuum-jacketed column first to 
remove the solvent, while the material boiling up to 80°/ 
0.05 mm solidified in the condenser. Recrystallisation of 
this crude product (2.28 g, 48%) from methanol with external 
cooling gave 5,6,7,8-tetrafluoro-2H_l_benzopyran (4), m.p. 
44.0 - 45.5O [Found: C, 52.7; H, 1.8; M+, 204. C9H4F40 
requires C, 52.9: H, 2.0%; M, 2041. 6F (CDC13) 151.2 
(doublet of doublets), 157.7 (triplet), 164.0 (doublet of 
doublets) and 169.1 p.p.m. (triplet) with intensities in the 
ratio 1:l:l:l respectively; hH (CDC13) 4.87 (CH2 at position 
2); 5.90 (doublet of triplets, vinylic C-H at position 3, 

J3H_4H 10 Hs; J2H_3H 3.5 Hz) and 6.58 p.p.m. (doublet, 
vinylic C-H at position 4). 

(b) Use of 1,3,4,5,6,7,8-heptafluoro-2-naphthyl prop-2- 
enyl ether (5) 141 

The ether (5) (2.07 g), anhydrous KF (0.87 g) and dry 
sulpholane (10 ml) were heated together at 155-162O for 4 h. 
The mixture was diluted with water, acidified (2M HCl), and 
extracted with ether. The extracts were washed with water, 
dried (MgS04) and the residue sublimed at 95O/O.O5 mm to give 
crude product (0.80 g, 41%). Recrystallisation of the 
sublimate from light petroleum [b-p. 60-80°] gave 5,6,7,8,9,10- 
hexafluoro-2H naphtho[2,1_b]pyran (6), m-p. 98.5 - 100.O" 

[Found: c, 54.0; H, 1.0; M+, 290. C13H4F60 requires 
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c, 53.8; H, 1.4%; M, 2901. AF (CDC13) 142.3 (doublet of 
doublets, peri J8F,gF 64 Hz), 144.2 (triplet), 147.1 (doublet 
of triplets, a peri fluorine), 156.9 (overlapping multiplets) , 
and 160.1 p.p.m. (triplet) with intensities in the ratio 
1:1:1:2:1 respectively; 6H (CDC13) 4.90 (CH2 at position 21, 
5.86 (doublet of triplets, vinylic C-H at position 3, 

J3H_4H 10 Hz; J2H_3H 4 Hz) and 7.13 p.p.m. (doublet, vinylic 
C-H at position 4). 

(c) Use of 2,4,5,6-tetrafluoro-3-pyridyl prop-2-enyl 
ether (8) [5] 

The ether (8) (5.48 g), anhydrous KF (3.23 g) and dry 
sulpholane (25 ml) were heated together in a sealed nickel 
tube (capacity: 85 ml) at 182O for 4 h. The crude reaction 
product, worked up as in (b) was distilled in vacua at 95O/ 
0.05 sun. The semi-solid distillate (1.8 g, 36%) was 
examined by 19 F n.m.r. spectroscopy and was shown to consist 
mainly of two isomers containing three fluorine atoms in the 
ratio 95:5. The major component, isolated by crystallisation 
of the mixture from methanol with external cooling was 
6,7,8-trifluoro-2H-pyrano[3,2_blpyridine (lo), m-p. 38.5 - 

40.5O [Found: C, 51.4: H, 1.9; N, 7.5: M+, 187. C8H4F3N0 
requires C, 51.3; H, 2.1; N, 7.5%; M, 1871. ~5~ (CDC13) 
92.7 (a broad doublet of doublets), 143.6 (a sharp doublet of 
doublets) and 162.0 p.p.m. (a sharp doublet of doublets) 
with intensities in the ratio 1:l:l respectively; gH (CDC13) 
4.93 (CH2 at position 2), 6.00 (doublet of triplets, 
vinylic C-H at position 3, J3H_4H 10 Hz; J2H_3H 3 Hz) and 
6.35 p.p.m. (doublet, vinylic C-H at position 4). 

The minor component, isolated from the mother liquors 
from the crystallisation of the original mixture as the 
faster moving component on thick layer chromatography on 
silica using 80% CC14:20% CHC13 iv/v) as eluent and after 
recrystallisation from methanol with external cooling, was 
5,6,8-trifluoro-2H-pyrano[2,3_c]pyridine (12) m.p. 46 - 46.2' 

[Found: c, 51.4; H, 1.7; N, 7.4. C8H4F3N0 requires C, 
51.3; H, 1.9; N, 7.5%]. 6F (CDC13) 93.9 (a broad doublet 
of doublets), 97.3 (a broad doublet of doublets) and 153.7 
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p.p.m. (a sharp doublet of doublets) with intensities in the 

ratio 1:l:l respectively; 6H (CDC13) 4.93 (CH2 at position 

2), 6.14 (doublet of doublets, vinylic C-H at position 3, 

JJH_4H 10 Hz; J2H_3H 3.5 Hz), and 6.67 p.p.m. (doublet, 

vinylic C-H at position 4). 

(d) Use of 2,3,5,6-tetrafluoropyridyl prop-2-enyl ether 

I5] 
The ether (1.14 g), anhydrous KF (1.02 g) and dry 

sulpholane (10 ml) were heated together in a nickel tube at 

137 - 140° for 17 h. The mixture was worked up as in (c) 

and the crude product (0.18 g) was examined by 19 F n.m.r. 

spectroscopy and shown to contain approximately equal amounts 

of unreacted starting material (9%) and 2,3,5,6-tetrafluoro- 

4-hydroxypyridine (10%) [7]. 

(e) Use of pentafluorophenyl prop-2-enyl sulphide (13) 

[81 
The sulphide (13) (1.89 g), anhydrous KF (1.91 g) and 

dry sulpholane (10 ml) were heated together in a sealed nickel 

tube at 191 - 192O for 22 h. The mixture was treated with 

water, extracted with ether, the extracts dried (MgS04) and 

the solvent evaporated. The residual brown oil (1.09 g) 

shown by 19 F n.m.r. spectroscopy to be a complex mixture of 
products was distilled and the distillate (0.63 g) was 

separated by chromatography on silica (15" x 1") using light 

petroleum [b.p. 40 - 60'1 as eluent. The fastest moving 

(and major) component was 4,5,6,7-tetrafluoro-2-methylbenzo- 

[blthiophen (14) (0.15 g, 9%) identified by i.r. spectroscopy 

by comparison with the i.r. spectrum of an authentic sample 

191. 
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